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Tests with Variable Stress Ratios in

The Plastic Range*

By Aris Phillips (Yale University)

Abstract. In this paper we consider, for aluminum 2S-0,

the fundamental assumptions on which the simple incremental

theory of plasticity is based, as well as the over-all va-

lidity of this theory. As far as the fundamental assumptions

are concerned we are able to show that, whereas the flow rule

is valid even for extreme types of paths of loading, a gener-

alized stress-strain curve does not exist. Thus, it becomes

necessary to modify the theory, and it is shown that the

modified theory is substantiated by our experiments. We also

show that the flow rule of the simple theory of creep is valid.

INTRODUCTION
1

In a previous paper it has been shown that for aluminum 2S-O, in tests

with variable stress ratios, the flow rule of the simple incremental theory

of plasticity is fairly well verified by experiments. In this paper we again

consider aluminum 2S-O. First we give additional information on the validity

of the flow rule of the simple incremental theory of plasticity. Next we con-

sider the flow rule of the simple theory of creep. We then show that, for the

material in question a generalized stress-strain curve does not exist, and

accordingly it is necessary to modify the stress-strain relations of the simple

*The results presented in this paper were obtained in the course of research

sponsored by the Office of Naval Research.

1. Aris Phillips and L. Kaechele, J. Appi. Mech. ?1. 43 (1956).
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incremental theory of plasticity. Finally, we show how well this modified

theory is substantiated by our test measurements.

DESCRIPTION OF THE TESTS

The tests with which the simple incremental theory of plasticity and the

simple theory of creep are compared in this paper were made with thin-walled

tubes of aluminum 2S-O which were subjected to combined tension and torsion

with variable stress ratios. Four series of tests were made (Series A, B, C,

and G).

For the test series A and B the stresses were measured2 by means of a

specially constructed mechanical type strain gage. For the test series C and

G the strains were measured1 by SR-4 resistance strain gages. The accuracy

of the mechanical gage wast2 x 10 - 5 inches per inch for the axial strain, and

t 5 x 10 - 5 inches per inch for the shearing strain. The accuracy of the SR-4

gages in the plastic range is better than 5% for strains less than 3000 micro-

inches per inch, and better than 10% for strains between 3000 microinches per

inch and 10,000 microinches per inch. A comparison of the accuracy of the

SR-4 gages with the accuracy of the mechanical gages in these tests shows that

the SR-4 gages are the more accurate ones for small and medium increments of

strain. For example, for axial strain measurements the SR-4 gages have better

accuracy than the mechanical gage for strain increments of 200 microinches per

inch or less.

The load was applied by means of a testing machine of the deadweight

type2 which does not include any ball bearings. Thus, errors due to the ball

bearing friction are eliminated. A testing machine of the deadweight type is

preferable to one of the straining type, because the former one will not hide

any time effects.

2. Aris Phillips, J. Appl. Mech. 19, 496 (1952).
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The material of the tubes was supplied in the annealed condition in tubular

form with an internal diameter of 0.75 inches and a wall thickness of 0.25

inches. The finished specimens had an over-all length of 11 inches with an

intermediate length of 6-3/4 inches of reduced wall thickness equal to 0.030+0.001

inches for the test series A, B, and C, and to 0.050+20.002 inches for the test

series G. The internal diameter of the machined specimen was 0.78 inches. The

wall thickness of the tubular specimen was measured by using a specially con-

2
structed apparatus . The ratio of the wall thickness to diameter was selected

so as to delay buckling as much as possible and at the same time to insure an

essentially uniform stress distribution throughout the wall of the specimen.

No difficulties because of buckling have been encountered.

Microscopic study of the material showed that the grains were equiaxed,

with an average size of from 0.004 to 0.008 inches. Random orientation was in-

dicated by random light reflection angles for different grains in the polished

specimens.

As is to be expected with pure aluminum a considerable amount of creep

occurs at the higher stress levels, although the rate of creep very soon becomes

negligible for short time readings (of the order of a few minutes). If the load,

however, is sustained for half an hour or more we shall have substantial creep

strains. In a few cases, after the reading for the plastic strains had been

made, we kept the load constant for a considerable time so that subsequent creep

strain measurements could be made at room temperature. After a number of creep

strain measurements, for the same load, had been made, the load was increased

again so that new plastic strain measurements could be taken.



THE FLOW RULE

The simplest incremental theory of plasticity has the stress.plastic strain

relations
3

and the corresponding relations for d10

The octahedral shearing stress r is given by

From equations (1) we find the proportionality relations

___ _: - ' ____-___ -

oy di; ____

which express the flow rule. Our first problem will be to find the degree of

validity of the flow rule for the tests described.

In a tension-torsion test we have

y: z: : A= ,- (,,/

Thus, relations (3) give

Hence if we superimpose a (ps:/)plane on the ( ol, ,,,iplane, the vectors

3. Aris Phillips, Introduction to Plasticity (The Ronald Press Company, New
York, 1956) p. 125.
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(v~<' ~with the points of application (m, 6 r,)will be directed

radially outward from the origin. This is a criterion of the validity of the

proportionality expressed by equations (3). A similar representation of the

results of combined stress tests has been given by Hohenemser and Prager4.

In Fig. 1 we see the results of three of the tests (B-4, B-8, G-l) con-

cerning the validity of flow rule (3). In test B-8 the specimen was loaded

first in tension and then in torsion, while the tensile stress was kept con-

stant. In test G-1 the loading process was considerably more complicated. It

is seen that in test G-1 we loaded first in tension and then in torsion while

the tensile stress was kept constant; afterwards, the loading process consisted

in either increasing 'Z while decreasing Cr , or increasing a while

decreasing T . We tried to make the reversals from increasing C to de-

creasing and vice versa as sharp as possible without introducing unload-

ing or neutral change of stress . Such sharp reversals would show whether the

direction of the strain increment is independent of the direction of loading.

Test B-4 is intermediate to tests B-8 and G-1 as far as severity of the loading

path is concerned.

From Fig. 1 we see that the flow rule is valid with good accuracy in all

three tests. That the results of test G-1 satisfy the flow rule is quite re-

markable, since recently published test results by Naghdi and his co-workers
5 ,

with paths of loading similar to G-1, do not satisfy the flow rule.

In Fig. 2 we see the results of test C-2 in which the specimen was loaded

first in torsion, and then in tension while the shearing stress was kept con-

stant. From this figure we see that the flow rule is valid in the beginning,

* For the definition of neutral change of stress, see Ref. 3, P. 124.

4. K. Hohenemser and W. Prager, ZAMM 12, 1 (1932).

5. P. M. Naghdi, J. C. Rowley, and C. W. Beadle, J. Appl. Mech. 22, 416 (1955).
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and then an instability in the directions of the strain-increment vectors occurs.

This instability my be due to the existence of corners in the yield surface.

Such yield corners have been repeatedly discussed in the literature(6,7).

In some of the tests we tried to see whether at a given point of the load-

ing path the direction of the strain increment vector will remain the same while

creep deformation occurs. Fig. 3 shows the results. In all the tests in which

the gradually increasing creep deformation has been measured, no change in the

direction of the strain increment vector was detected. This shows that the flow

rule is valid also during creep. It is interesting that in test C-2 instability

in the direction of the strain increment vector occurs in plasticity and not in

creep; hence this instability cannot be attributed to creep.

6. D. C. Drucker, Proc. 1st U. S. Natl. Congress of Applied Mechanics, ASME

(1951), p. 487.

7. D. C. Drucker and F. D. Stockton, Proc. SESA, 10, 2, p. 127 (1953).
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CCMPARISON OF THEORY WITH EXPERIMENTS

We now turn our attention to the function F in equations (1). Using

equations (1) we calculate the quantity'AV

a4 Z

We find

which, after integration becomes

In Figures 4, 5, and 6 we give the r. lo curves for the tests of the

series A, B, and C. We see that there is a substantial disagreement between

the T,* or/ curves of the various tests. Hence, a generalized stress-strain

curve does not exist for the material in question. This disagreement, however,

is of no basic importance for the validity of equations (1), because in these

equations there enters only the slope dq /W r. of the curves. From an in-

spection of the curves in Figures 4 to 6 it becomes obvious that for the same

the value of the slope 0 / changes very much from test to test. Thus,

the slope could not be a function of " . On the other hand,

for the same the value of the slope changes much less. Hence, we can

consider a function rather of /7 than of .

We found, however, that for values of larger than about 2000 micro-

inches per inch the curves are much closer to each other per-

centagewise than are the curves, This is due to the fact that

a /7 and are equal to to.) 0< and cog , respective-

ly, where o< is the angle which the tangent to the r,,,,, curve is
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making with the /0"  curve. These trigonometric functions are sensitive to

changes in the value of o( , and / o is more sensitive for larger values

of 0< than for smaller values; whereas for Cotoa the opposite is true.

Now, for an increasing 4"  the angle cK decreases and therefore

-  - becomes gradually less sensitive to the changes of

the angle 0< , whereas . becomes gradually more sensitive

to the changes of o'<

In Figures 7, 8, and 9 we see the "/ curves for the test

series A, B, and C. We see that these curves are close to each other for values

of t7 larger than about 2000 microinches per inch. Assume now that we dis-

regard the difference between the various a/j,7curves, thus considering

that 04 is a unique function of for all the tests. Then

and, integrating, we find

where A is an integration constant. Solving this equation for

we find

From equations (9) and (11) we then find

Thus, the assumption that is a unique function of r is

equivalent to the assumption that is a unique function of -,

where A is a constant varying from test to test.
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The stress-strain relations (1) will now be modified so that e 70 -

will be considered as a function of C . Thus we shall take into account

the fact that the constant A changes from test to test, but we shall disregard

the fact that the angle o( varies from curve to curve for the same .

Let us denote with the curve C / d . Then

from expressions (3) which have been proved to be correct in the previous section

we find

_______ c'C // d'" _

... .. ..___ (/,)
___ ___ - d; 3z ,(r,

from which again it follows that

Similarly we find

and the corresponding relations for O[d , and d X . These

are the modified stress-strain relations of the simple incremental theory of

plasticity.

For a comparison of this modified theory with the tests, we determine

for each of the tests as a function of f . Then we average

these functions for the same , and this average is used as the I

curve in equations (14) and (15).

In Figures 10 to 14 we compare some of our experimental results with theo-

retically calculated curves. We see that the theoretical calculations reproduce

the experimental results with fair to good accuracy. We remark also that a sub-

stantial portion of the difference between theoretical and experimental curves
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occurs in the initial simple tension stage of the tests. This means that the

difference between theory and experiment is due to a substantial part to the

difference in the stress-strain curves in simple tension of the various speci-

mens. Any possible lack of validity of the combined stress theory does not

seem to be a more important factor in the difference between theoretical and

experimental results than the factor just mentioned.
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